Lecture 10

We will start by proving Lagrange's theorem. Recall
Theorem [Lagrange's Theorem]
Let G be a finite group and $H \leq G$.
Then $|H|||G|$.
Proof Let $a_{1} H, a_{2} H, \ldots, a_{k} H$ denote the distinct left cosets of H ir G. Then from the Lemma proved in Lee. 9 , we know that the set of all left cosets of H in G partitions G, ie.,

$$
\begin{equation*}
G=a_{1} H \cup a_{2} H \cup \cdots \cup a_{k} H \tag{*}
\end{equation*}
$$

Property (4) from the Lemma tells us that all the cosets are disjoint and Property (6) tells us that $\left|a_{i H}\right|=|H| \quad \forall \quad 1 \leq i \leq k$

So courting sizes on both sides of (*), we get

$$
\begin{aligned}
|G| & =|a, H|+\cdots+\left|a_{k} H\right| \\
& =\underbrace{|H|+\cdots+|H|}_{k \text {-times }} \\
\Rightarrow \quad k & =\frac{|G|}{|H|} \Rightarrow|H||G|
\end{aligned}
$$

Remark Let's clearly understand what Lagrange's theorem is saying! If you have a group G with $|G|=n$, then any subgroup of G must have order which divides n. So for example if $|G|=12$, then we can say beforehand that a set H with $|H|=8$ or $|H|=10$ cannot be a subgroup as 8×12 and 10×12. However, the converse of Lagrangis theorem is false.
i.e., there might not be subgroups of G whose order are divisors of $|G|$. e.g. if $|G|=12$, G might or might not have a subgroup of order 6, even though 6)12. Weill see an explicit counterexample soon.

Let's see various corollaries of Lagrange's theorem.

Corollary I If G is a finite group and $H \leqslant G$ then the index of H in G is $\frac{|G|}{|H|}$,ie., $|G: H|=\frac{|G|}{|H|}$.

Proof Recall from previous lecture that $|G: H|$ was defined as the number of distinct left cosets of H ii G. From the proof of the theorem we observe $|G: H|=R$ and hence

$$
|G: H|=\frac{|G|}{|H|}
$$

Corollary 2 In a finite group G, ord $(a)||G| \quad \forall$ $a \in G$.
Proof Recall that $I f a \in G,\langle a\rangle$ is a subgroup of $|G|$. Also $\operatorname{ord}(a)=|\langle a\rangle| \Rightarrow$ by Lagranges theorem, ord (a)||G|.

Corollary 3 Groups of prime order are cyclic; ie., if $|G|=p$ for a prime $p \Rightarrow G$ is cyclic. Proof Suppose $|G|=p$. Let $a \in G, a \neq e$. Then $|\langle a\rangle|||G|=0$ either $|\langle a\rangle \mid=1$ or $|\langle a\rangle|=p$ as ϕ is a prime. But $|\langle a\rangle| \neq 1=0|\langle a\rangle|=\rho$ and hence $G=\langle a\rangle$ and is cyclic.

Corollony 4. Let G be a finite group and let $a \in G$. Then $a^{|G|}=e$.
Proof Left as an exercise.

Corollary 5 [Fermat's Little Theorem]
For every integer a and even prime p, $a^{p} \equiv a \bmod p$. (Recall modular arithmetic from MATH 135).
Proof if $\phi \mid a=0 \quad a \equiv 0 \bmod p \Rightarrow a^{p} \equiv a \bmod p$. If $p \times a=0 \quad a \in U(p)$ [Recall the group of units in $\left.\mathbb{Z}_{p}\right]$. Since $|U(p)|=p-1=0$ from Lagrange's theorem (or Corollary 4) $a^{p-1} \equiv 1 \bmod p$ $=\quad a^{p} \equiv a \bmod p$.

Lagrange's Theorem imposes severe restrictions on the possible order of subgroups. The next
theorem also places powerful limits on the existence of certain subgroups.

Theorem Let G be a group and H and K be two finite subgroups of G. Define the set

$$
H K=\{h k \mid h \in H, k \in K\} \text {. Then }|H K|=\frac{|H||K|}{|H \cap K|} \text {. }
$$

Proof: It looks by looking at the set HK that if should have $|H| \cdot|k|$ elements. However it might happen ire the group G that $h_{1} k_{1}=h_{2} k_{2}$ where $h_{1} \neq h_{2}$ and $k_{1} \neq k_{2}$, so there might be overcounting. We would like to show that the extent to which this overcounting occurs. Let $x \in H \cap K$. Then for any $h \in H$ and $k \in K$ $h k=(h x)\left(x^{-1} k\right)$ and $h x \in H K$ and $x^{-1} k \in H K$ \Rightarrow every element in $H K$ is represented by
atleast $|H \cap K|$ times.
If $h_{1} k_{1}=h_{2} k_{2} \Rightarrow x=h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1} \in H \cap K$ $\Rightarrow \quad h_{1}=h_{2} x$ and $k_{2}=x k_{1}$. So every element ie HK is represented exactly by $|H O K|$ products $=0 \quad|H K|=\frac{|H||K|}{|H \cap K|}$.

10

An example of using Lagrange's Theorem and the theorem above io Problem 8 on your assignment 2 .
\qquad
\qquad o

